5,256 research outputs found

    Local Solutions for Generic Multidimensional Resonant Wave Conversion

    Get PDF
    In more than one spatial dimension, resonant linear conversion from one wave type to another can have a more complex geometry than the familiar 'avoided crossing' of one-dimensional problems. In previous work we have shown that helical ray shapes are generic in a mathematical sense. Here we briefly describe how the local field structure can be computed.Comment: 4 pages, to appear in the AIP Proceedings of the 15th Topical Conference on RF Power in Plasma

    Breadboard linear array scan imager using LSI solid-state technology

    Get PDF
    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained

    Hawking radiation and classical tunneling: A ray phase space approach

    Get PDF
    Acoustic waves in fluids undergoing the transition from sub-to supersonic flow satisfy governing equations similar to those for light waves in the immediate vicinity of a black hole event horizon. This acoustic analogy has been used by Unruh and others as a conceptual model for Hawking radiation. Here, we use variational methods, originally introduced by Brizard for the study of linearized MHD, and ray phase space methods, to analyze linearized acoustics in the presence of background flows. The variational formulation endows the evolution equations with natural Hermitian and symplectic structures that prove useful for later analysis. We derive a 2 x 2 normal form governing the wave evolution in the vicinity of the event horizon. This shows that the acoustic model can be reduced locally (in ray phase space) to a standard (scalar) tunneling process weakly coupled to a unidirectional non-dispersive wave (the incoming wave ). Given the normal form, the Hawking thermal spectrum can be derived by invoking standard tunneling theory, but only by ignoring the coupling to the incoming wave. Deriving the normal form requires a novel extension of the modular ray-based theory used previously to study tunneling and mode conversion in plasmas. We also discuss how ray phase space methods can be used to change representation, which brings the problem into a form where the wave functions are less singular than in the usual formulation, a fact that might prove useful in numerical studies. (C) 2016 AIP Publishing LLC

    Attention and regional gray matter development in very preterm children at age 12 years

    Get PDF
    Objectives: This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. Methods: A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. Results: VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error-corrected

    Universal singularity at the closure of a gap in a random matrix theory

    Full text link
    We consider a Hamiltonian H=H0+V H = H_0+ V , in which H0 H_0 is a given non-random Hermitian matrix,and VV is an N×NN \times N Hermitian random matrix with a Gaussian probability distribution.We had shown before that Dyson's universality of the short-range correlations between energy levels holds at generic points of the spectrum independently of H0H_{0}. We consider here the case in which the spectrum of H0H_{0} is such that there is a gap in the average density of eigenvalues of HH which is thus split into two pieces. When the spectrum of H0H_{0} is tuned so that the gap closes, a new class of universality appears for the energy correlations in the vicinity of this singular point.Comment: 20pages, Revtex, to be published in Phys. Rev.

    Presurgical thalamic hubness predicts surgical outcome in temporal lobe epilepsy.

    Get PDF
    OBJECTIVE: To characterize the presurgical brain functional architecture presented in patients with temporal lobe epilepsy (TLE) using graph theoretical measures of resting-state fMRI data and to test its association with surgical outcome. METHODS: Fifty-six unilateral patients with TLE, who subsequently underwent anterior temporal lobectomy and were classified as obtaining a seizure-free (Engel class I, n = 35) vs not seizure-free (Engel classes II-IV, n = 21) outcome at 1 year after surgery, and 28 matched healthy controls were enrolled. On the basis of their presurgical resting-state functional connectivity, network properties, including nodal hubness (importance of a node to the network; degree, betweenness, and eigenvector centralities) and integration (global efficiency), were estimated and compared across our experimental groups. Cross-validations with support vector machine (SVM) were used to examine whether selective nodal hubness exceeded standard clinical characteristics in outcome prediction. RESULTS: Compared to the seizure-free patients and healthy controls, the not seizure-free patients displayed a specific increase in nodal hubness (degree and eigenvector centralities) involving both the ipsilateral and contralateral thalami, contributed by an increase in the number of connections to regions distributed mostly in the contralateral hemisphere. Simulating removal of thalamus reduced network integration more dramatically in not seizure-free patients. Lastly, SVM models built on these thalamic hubness measures produced 76% prediction accuracy, while models built with standard clinical variables yielded only 58% accuracy (both were cross-validated). CONCLUSIONS: A thalamic network associated with seizure recurrence may already be established presurgically. Thalamic hubness can serve as a potential biomarker of surgical outcome, outperforming the clinical characteristics commonly used in epilepsy surgery centers
    • …
    corecore